Fast Data Collection in Tree-Based Wireless Sensor Networks

We investigate the following fundamental question - how fast can information be collected from a wireless sensor network organized as tree? To address this, we explore and evaluate a number of different techniques using realistic simulation models under the many-to-one communication paradigm known as converge cast. We first consider time scheduling on a single frequency channel with the aim of minimizing the number of time slots required (schedule length) to complete a converge cast.

We combine scheduling with transmission power control to mitigate the effects of interference, and show that while power control helps in reducing the schedule length under a single frequency, scheduling transmissions using multiple frequencies is more efficient. We give lower bounds on the schedule length when interference is completely eliminated, and propose algorithms that achieve these bounds. We also evaluate the performance of various channel assignment methods and find empirically that for moderate size networks of about 100 nodes, the use of multi-frequency scheduling can suffice to eliminate most of the interference.
Then, the data collection rate no longer remains limited by interference but by the topology of the routing tree. To this end, we construct degree-constrained spanning trees and capacitated minimal spanning trees, and show significant improvement in scheduling performance over different deployment densities. Lastly, we evaluate the impact of different interference and channel models on the schedule length.

Existing System:

Existing work had the objective of minimizing the completion time of converge casts. However, none of the previous work discussed the effect of multi-channel scheduling together with the comparisons of different channel assignment techniques and the impact of routing trees and none considered the problems of aggregated and raw converge cast, which represent two extreme cases of data collection.

Proposed System:

Fast data collection with the goal to minimize the schedule length for aggregated converge cast has been studied by us in, and also by others in, we experimentally investigated the impact of transmission power control and multiple frequency channels on the schedule length Our present work is different from the above in that we evaluate transmission power control under realistic settings and compute lower bounds on the schedule length for tree networks with algorithms to achieve these bounds. We also compare the efficiency of different channel assignment methods and interference models, and propose schemes for constructing specific routing tree topologies that enhance the data collection rate for both aggregated and raw-data converge cast.


  • Periodic Aggregated Converge cast
  • Transmission Power Control
  • Aggregated Data Collection
  • Raw Data Collection
  • Tree-Based Multi-Channel Protocol (TMCP)

Tools Used:

Front End : JAVA, Swing, J2ME