Protecting Location Privacy in Sensor Networks against a Global Eavesdropper

While many protocols for sensor network security provide confidentiality for the content of messages, contextual information usually remains exposed. Such contextual information can be exploited by an adversary to derive sensitive information such as the locations of monitored objects and data sinks in the field. Attacks on these components can significantly undermine any network application. Existing techniques defend the leakage of location information from a limited adversary who can only observe network traffic in a small region. However, a stronger adversary, the global eavesdropper, is realistic and can defeat these existing techniques.

This paper first formalizes the location privacy issues in sensor networks under this strong adversary model and computes a lower bound on the communication overhead needed for achieving a given level of location privacy. The paper then proposes two techniques to provide location privacy to monitored objects (source-location privacy)—periodic collection and source simulation—and two techniques to provide location privacy to data sinks (sink-location privacy)—sink simulation and backbone flooding. These techniques provide trade-offs between privacy, communication cost, and latency. Through analysis and simulation, we demonstrate that the proposed techniques are efficient and effective for source and sink-location privacy in sensor networks.

Existing System:

However, these existing solutions can only be used to deal with adversaries who have only a local view of network traffic. A highly motivated adversary can easily eavesdrop on the entire network and defeat all these solutions. For example, the adversary may decide to deploy his own set of sensor nodes to monitor the communication in the target network. However, all these existing methods assume that the adversary is a local eavesdropper. If an adversary has the global knowledge of the network traffic, it can easily defeat these schemes. For example, the adversary only needs to identify the sensor node that makes the first move during the communication with the base station. Intuitively, this sensor node should be close to the location of adversaries’ interest.

Proposed System:

We show the performance of the proposed privacy-preserving techniques in terms of energy consumption and latency and compare our methods with the phantom single-path method, a method that is effective only against local eavesdroppers. For the purpose of simulation, we assume that the network application only needs to detect the locations of pandas and always wants to know the most recent locations. We thus have every sensor node drop a new packet if it has already queued a packet that was generated on the same event. In our simulation, we assume that the adversary has deployed a network to monitor the traffic in the target network.

Modules:

  • Attackers Modules
  • Privacy-Preserving Routing Techniques
  • Adversary Model
  • Privacy Evaluation Model
  • Security Analysis

Tools Used:

Front End : J2EE
Back End : MySQL