Adaptive Fault Tolerant QoS Control Algorithms for Maximizing System Lifetime of Query-Based Wireless Sensor Networks

Data sensing and retrieval in wireless sensor systems have a widespread application in areas such as security and surveillance monitoring, and command and control in battlefields. In query-based wireless sensor systems, a user would issue a query and expect a response to be returned within the deadline. While the use of fault tolerance mechanisms through redundancy improves query reliability in the presence of unreliable wireless communication and sensor faults, it could cause the energy of the system to be quickly depleted.

Therefore, there is an inherent tradeoff between query reliability vs. energy consumption in query-based wireless sensor systems. In this paper, we develop adaptive fault tolerant quality of service (QoS) control algorithms based on hop-by-hop data delivery utilizing “source” and “path” redundancy, with the goal to satisfy application QoS requirements while prolonging the lifetime of the sensor system. We develop a mathematical model for the lifetime of the sensor system as a function of system parameters including the “source” and “path” redundancy levels utilized.

We discover that there exists optimal “source” and “path” redundancy under which the lifetime of the system is maximized while satisfying application QoS requirements. Numerical data are presented and validated through extensive simulation, with physical interpretations given, to demonstrate the feasibility of our algorithm design.

Existing System:

Existing research efforts related to applying redundancy to satisfy QoS requirements in query-based WSNs fall into three categories: traditional end-to-end QoS, reliability assurance, and application specific QoS . Traditional end-to-end QoS solutions are based on the concept of end-to-end QoS requirements. The problem is that it may not be feasible to implement end-to-end QoS in WSNs due to the complexity and high cost of the protocols for resource constrained sensors. This method does not consider the reliability issue.

Proposed System:

In this paper, we develop adaptive fault tolerant quality of service (QoS) control algorithms based on hop-by-hop data delivery utilizing “source” and “path” redundancy, with the goal to satisfy application QoS requirements while prolonging the lifetime of the sensor system. We develop a mathematical model for the lifetime of the sensor system as a function of system parameters including the “source” and “path” redundancy levels utilized. We discover that there exists optimal “source” and “path” redundancy under which the lifetime of the system is maximized while satisfying application QoS requirements.

Modules:

  • General Approach
  • Software Fault
  • Data Aggregation
  • Forward Traffic

Tools Used:

Front End : C#.net