A Privacy-Preserving Location Monitoring System for Wireless Sensor Networks

Monitoring personal locations with a potentially untrusted server poses privacy threats to the monitored individuals. To this end, we propose a privacy-preserving location monitoring system for wireless sensor networks. In our system, we design two innetwork location anonymization algorithms, namely, resource- and quality-aware algorithms, that aim to enable the system to provide high quality location monitoring services for system users, while preserving personal location privacy. Both algorithms rely on the well established k-anonymity privacy concept, that is, a person is indistinguishable among k persons, to enable trusted sensor nodes to provide the aggregate location information of monitored persons for our system.

Each aggregate location is in a form of a monitored area A along with the number of monitored persons residing in A, where A contains at least k persons. The resource-aware algorithm aims to minimize communication and computational cost, while the quality-aware algorithm aims to maximize the accuracy of the aggregate locations by minimizing their monitored areas. To utilize the aggregate location information to provide location monitoring services, we use a spatial histogram approach that estimates the distribution of the monitored persons based on the gathered aggregate location information.

Then the estimated distribution is used to provide location monitoring services through answering range queries. We evaluate our system through simulated experiments. The results show that our system provides high quality location monitoring services for system users and guarantees the location privacy of the monitored persons.

Existing System:

In an identity-sensor location monitoring System, since each sensor node reports the exact location information of each 0monitored object to the server, the adversary can pinpoint each object's exact location. On the other hand, in a counting-sensor location monitoring system, each sensor node reports the number of objects in its sensing area to the server. The adversary can map the monitored areas of the sensor nodes to the system layout. If the object count of a monitored area is very small or equal to one.

Proposed System:

This paper proposes a privacy-preserving location monitoring system for wireless sensor networks to provide monitoring services. Our system relies on the well established k-anonymity privacy concept, which requires each person is indistinguishable among k persons. In our system, each sensor node blurs its sensing area into a cloaked area, in which at least k persons are residing. Each sensor node reports only aggregate location information.

We propose two in-network aggregate location anonymization algorithms, namely, resource- and quality-aware algorithms. Both algorithms require the sensor nodes to collaborate with each other to blur their sensing areas into cloaked areas, such that each cloaked area contains at least k persons to constitute a k-anonymous cloaked area. The resource-aware algorithm aims to minimize communication and computational cost, while the quality-aware algorithm aims to minimize the size of the cloaked areas, in order to maximize the accuracy of the aggregate locations reported to the server.

Modules:

  • WSN Location Monitoring Module
  • Aggregate locations Module
  • Mapped Location monitoring Module
  • Minimum bounding rectangle (MBR)

Tools Used:

Front End : JAVA